
STUDIA UNIVERSITATIS BABEȘ-BOLYAI
Engineering 67(1) 2022 DOI: 10.24193/subbeng.2022.1.20

209

©2022 Studia UBB Engineering. Published by Babeş-Bolyai University.
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License

Simulation of electric field lines produced by electric point charges

Marius-Florian Predus, Cristian-Mircea Muscai*, Cornel Hatiegan

Abstract. The paper proposes o method of solving differential equations
using Runge-Kutta method and presents an application made in a Visu-
al programming language that solves two differential equations step by
step drawing the graph obtained for two electrically charged particles
that interact by their electrical fields.

Keywords: differential equations, electrical field, simulation

1. Introduction

 Numerical methods are those techniques that allow the transformation of
mathematical models into numerical models (operating on finite spaces) and as-
sume algorithms that can be easily transformed into source codes, using different
classical programming languages and, through them, solve real problems with the
help of the computer [1], [2].
 Numerical calculation methods often require retaining a very large number of
terms and developing them in a Taylor series in order to obtain the best accuracy of
the results. This is not always possible due to the large number of calculations re-
quired for each of the required points, especially if the integration step is constant
and of very small value, these limitations being imposed by the memory space and
the execution speed of these algorithm calculations [1], [2], [3].
 Partial differential equations are often used in mathematically oriented scien-
tific fields such as physics and engineering, aiding in the scientific understanding
of phenomena in the fields of electrostatics, electrodynamics, thermodynamics and
other physics-related phenomena modeling applications [1], [2], [4].
 The integration of differential equations by numerical methods requires the
creation of a program that will process the entered data and obtain a discrete string
of values that represent an approximation of the exact solution requested. The ac-
curacy of this solution depends on the solving method used but also on the chosen
form of the equations subjected to numerical processing [3], [4].

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

210

 The difficulty of creating computer programs that perform the integration of
differential equations is to find a critical ratio between the processing precision and
the speed of the program's execution, excluding the limit points where the defined
functions do not make sense.
 In order to obtain an algorithm as stable as possible, the time interval dt must
be small but large enough for the method to be efficient from the point of view of
the duration of the calculation [2], [3].
 In general, integration methods are divided into two large categories: step-by-
step methods and complex methods that take into account several previous values,
not just one, as is the case with step-by-step methods [4].

2. The Runge-Kutta method

 Runge-Kutta methods are iterative methods for solving ordinary differential
equations used in setting initial value problems where we are given a differential
equation y′ (t)=f(t,y(t)) over a time interval [t0, t1] with a starting point y(t0)=y0.
 The Runge-Kutta method of the fourth degree performs four successive ap-
proximations, and the time interval dt must be chosen so that the integration is as
precise as possible, being the most frequently used in practice [5], [6], [7].
Unlike Euler's Method, which calculates one slope at an interval, Runge-Kutta cal-
culates four different slopes and uses them as weighted averages to better approxi-
mate the actual slope, the velocity, of the monitored body [6], [7].
 These slopes are commonly named k1, k2, k3 and k4, and must be calculated
at each time step. Its position is then calculated using this new slope at each itera-
tion. The Runge-Kutta’s formula is defined as [4], [5], [6]:
)22(

6
1

43211 kkkkyy ii ++++=+
 (1)

Where each term is defined as:

),(1 ii yxfk = (2)
)

2
1,

2
1(112 hkyhxfk i ++= (3)

),
2
1(33 hkyhxfk ii ++= (4)

),(34 hkyhxfk ii ++= (5)

Each of the Runge-Kutta terms has a well-defined role in the calculation
method used: k1 is the increment based on the slope at the beginning of the inter-
val, k2 is the increment based on the slope at the midpoint of the interval, k3 is the
increment based on the midpoint slope and k4 is the increment based on the slope
at the end of the interval [5], [6].

211

The method used has the advantage that during the integration, the step size is
adapted so that the estimated error remains below a threshold defined by the user, thus
solving the two distinct cases that may appear during the program run, i.e. if the calcu-
lated error is too large, it is repeated with a step of a smaller size, and if the error is
much too small, the step size is increased to save processing time, thus helping the user
who no longer has to identify the size suitable for processing [3], [5], [6].

3. Electric field line modeling application

The developed application calculates the steps required for the successive
plotting of the solution for the electrostatic equations for the 3 distinct cases using
the Runge-Kutta method of order 4, the standard variant of the method, and 13
necessary constants.

For the case of the two electrostatically charged particles, their modeling is
done with the help of two differential equations [8] which have as boundary condi-
tions x(s0) = x0 and y(s0) = y0 :

22

yx

y

EE

E
ds
dx

+

−
=

 (6)

22

yx

y

EE

E
ds
dx

+

−
= (7)

The first case is presented in Figure 1 where we considered two electrostati-
cally charged point particles with charges of opposite signs, in which case the
equipotential field lines and the field lines that close between the two electrostati-
cally charged particles are drawn.

Figure 1. The two particles have opposite signs

212

The second case is somewhat similar, but the potentials of the two particles
differ in the sense that they are now of the same sign, which can also be seen in
Figure 2 where their field lines repel each other.

Figure 2. The two particles have same signs

The third case requires placing a single electrostatically charged particle be-

tween the armatures of a planar capacitor, as seen in Figure 3, and the field lines
are drawn for this case, with the user being able to change the distance of the parti-
cle from the capacitor arms, represented as two parallel lines in the graphic.

Figure 3. The particle placed between capacitor’s armatures

213

The application allows changing the number of equipotential lines displayed,
the size of the drawn plane, and the distance between successive field lines. For
better visibility, the application window can be resized and the lines on the display
grid can be hidden.

We often come across simulation applications made for didactic purposes us-
ing common programming languages in different technical fields [9], [10].

The program is made in the Visual Studio development environment, with the
help of the Visual Basic programming language, in the form of a standard executa-
ble that allows it to run under Windows operating systems [11], [12]. The applica-
tion consists of a module containing the graphics routines and a main window
named Form1, on which several graphics controls are placed, including a Picture-
Box control that represents the display surface for graphic functions, and several
HscrollBar controls for setting various display parameters like zoom or number of
lines drawn.

To calculate the grid lines and the values displayed on the graph axes, we use
a graphic routine called "Draw" which receives as values the limits, minimum and
maximum values of the axes and the Form window that contains the graphic con-
trol on which the respective lines are drawn [13], [14].

The three cases are selected using a set of three RadioButton controls that al-
low individual selection of the drawn cases.

The starting point for the application is the main form. From the main form,
based on our selected option, one of the two routines, "Afișez" or "Afisez1", is
called, allowing the calculation of the derivatives and the point-by-point plotting of
the graphs resulting from different scaling for each type of curve drawn on the
screen [15].

Figure 4. The routine that implements the Runge-Kutta method

214

The "Rezolv" subroutine shown in Figure 4 is the one that helps to implement
the 4th order Runge-Kutta algorithm, which successively calculates k1, k2, k3 and
k4, returning the new values to the calling routine with the help of the parameters
passed by reference to it. To avoid getting stuck, the algorithm calculates, at each
step, a reference value that represents the sum of the squared dx and dy. If this val-
ue is lower than a very small imposed limit, it stops the program because the de-
sired precision has been reached or it has reached a point of singularity from where
the created algorithm can no longer exit. The program can calculate only in one
direction, based on the values already memorized, so a dead lock point can’t be
exited otherwise [11], [12].

 The types of the variables used in the program are Double precision to keep
the accuracy of the processed data within reasonable limits due to the small quanti-
ties used to model the two charged particles [10], [11], [12].

4. Conclusions

The advantage of implicit Runge-Kutta methods over explicit methods is their
greater stability, especially when stiff equations are applied.

The application allows drawing of all existing field lines between electrostati-
cally charged particles, both of the equipotential type that always have a closed
contour, and of the others that originate in the vicinity of positive electric charges
and close to negative electric charges.

The proposed application has a simple and intuitive interface and the results
obtained can represent the basis of an understanding of the way of drawing the
field lines and the way of interaction between electrically charged particles.

References

[1] Demsoreanu B., Metode numerice cu aplicații in fizică, Editura Academiei-
Române, 2005

[2] Sorea, D., Lungoci, C., Scutaru G., Metode numerice cu aplicații în ingineria
electrică. Curs aplicativ, Editura Universității Transilvania Braşov, 2009.

[3] Burrage K., Parallel and Sequential Methods for Ordinary Differential
Equations, Numer. Math. Sci. Comput., Oxford University, New York, 1995.

[4] Butcher J.C., Numerical Methods for Ordinary Differential Equations, 2nd ed.,
John Wiley & Sons, Chichester, 2003.

[5] Shampine L.F., Numerical Solution of Ordinary Differential Equations,
Chapman & Hall, New York, 1994.

[6] Ketcheson D.I., BinWaheed U., A comparison of high-order explicit Runge-
Kutta, extrapolation, and deferred correction methods in serial and parallel,
Communications in applied mathematics and computational science, 9(2),
2014, pp.175 – 200.

215

[7] Scutaru G., Metode numerice, Editura Universității Transilvania Braşov, 2003.
[8] Haţiegan C., Suciu L., Fizică Tehnologică. Teorie şi aplicaţii, Editura Eftimie

Murgu, Resita, 2010/
[9] Hatiegan C., Stroia M.-D., Popescu C., Muscai C.-M., Application for Simula-

ting and Analysis of a Serial R-L-C Circuit, Analele Universităţii Constantin
Brâncuşi din Târgu-Jiu - Seria Inginerie, 3, 2020.

[10] Stroia M.-D., Hatiegan C., Muscai C.-M., Simulating an improved algorithm
for propagation of transverse oscillations through a string, Studia Universitatis
Babeş-Bolyai Engineering, 65(1), 2020.

[11] Schneider D., An Introduction to Programming Using Visual Basic, 9th

Edition, Pearson, 2013, USA.
[12] Newsome B., Beginning Visual Basic 2015, Wrox, USA, 2015.
[13] Alexander R., Diagonally implicit Runge–Kutta methods for stiff O.D.E.s,

SIAM J. Numer. Anal. 14(6), 1977, pp. 1006–1021.
[14] Zlatev Z., Dimov I., Faragó I., Havasi Á., Richardson Extrapolation:

Practical Aspects and Applications, De Gruyter Ser. Appl. Numer. Math. 2,
De Gruyter, Berlin, 2018.

[15] Durham Jr. H.L., Francis Jr. O.B., Gallaher L.J., Hale Jr. H.G., Perlin I.E.,
Final Report: Study of methods for the numerical solution of ordinary
differential equations: Final report. 9 Nov. 1963 - 8 Nov. 1964. NASA,
Huntsville, AL, Georgia Institute of Technology, Engineering Experiment
Station, Atlanta, Georgia, 1965.

 Adresses:

• Dr. Eng. Marius-Florian Predus, Babeș-Bolyai University, Faculty of
Engineering, Piaţa Traian Vuia, nr. 1-4, 320085, Reşiţa, Romania
marius.predus@ubbcluj.ro

• PhD. Stud. Eng. Cristian-Mircea Muscai, Polytechnic University of
Bucharest, Faculty of Electrical Engineering, Splaiul Independenței
313, 060042, București, Romania
muscaicristian@yahoo.com
(*corresponding author)

• Lect. Dr. Eng Cornel Hatiegan, Babeș-Bolyai University, Faculty of
Engineering, Piaţa Traian Vuia, nr. 1-4, 320085, Reşiţa, Romania
cornel.hatiegan@ubbcluj.ro

mailto:marius.predus@ubbcluj.ro
mailto:muscaicristian@yahoo.com
mailto:cornel.hatiegan@ubbcluj.ro

