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Simulation of electric field lines produced by electric point charges 
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Abstract. The paper proposes o method of solving differential equations 
using Runge-Kutta method and presents an application made in a Visu-
al programming language that solves two differential equations step by 
step drawing the graph obtained for two electrically charged particles 
that interact by their electrical fields. 
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1. Introduction 

 Numerical methods are those techniques that allow the transformation of 
mathematical models into numerical models (operating on finite spaces) and as-
sume algorithms that can be easily transformed into source codes, using different 
classical programming languages and, through them, solve real problems with the 
help of the computer [1], [2]. 
 Numerical calculation methods often require retaining a very large number of 
terms and developing them in a Taylor series in order to obtain the best accuracy of 
the results. This is not always possible due to the large number of calculations re-
quired for each of the required points, especially if the integration step is constant 
and of very small value, these limitations being imposed by the memory space and 
the execution speed of these algorithm calculations [1], [2], [3]. 
 Partial differential equations are often used in mathematically oriented scien-
tific fields such as physics and engineering, aiding in the scientific understanding 
of phenomena in the fields of electrostatics, electrodynamics, thermodynamics and 
other physics-related phenomena modeling applications [1], [2], [4]. 
 The integration of differential equations by numerical methods requires the 
creation of a program that will process the entered data and obtain a discrete string 
of values that represent an approximation of the exact solution requested. The ac-
curacy of this solution depends on the solving method used but also on the chosen 
form of the equations subjected to numerical processing [3], [4]. 
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 The difficulty of creating computer programs that perform the integration of 
differential equations is to find a critical ratio between the processing precision and 
the speed of the program's execution, excluding the limit points where the defined 
functions do not make sense. 
 In order to obtain an algorithm as stable as possible, the time interval dt must 
be small but large enough for the method to be efficient from the point of view of 
the duration of the calculation [2], [3]. 
 In general, integration methods are divided into two large categories: step-by-
step methods and complex methods that take into account several previous values, 
not just one, as is the case with step-by-step methods [4]. 

2.  The Runge-Kutta method 

 Runge-Kutta methods are iterative methods for solving ordinary differential 
equations used in setting initial value problems where we are given a differential 
equation y′ (t)=f(t,y(t)) over a time interval [t0, t1] with a starting point y(t0)=y0. 
 The Runge-Kutta method of the fourth degree performs four successive ap-
proximations, and the time interval dt must be chosen so that the integration is as 
precise as possible, being the most frequently used in practice [5], [6], [7]. 
Unlike Euler's Method, which calculates one slope at an interval, Runge-Kutta cal-
culates four different slopes and uses them as weighted averages to better approxi-
mate the actual slope, the velocity, of the monitored body [6], [7]. 
 These slopes are commonly named k1, k2, k3 and k4, and must be calculated 
at each time step. Its position is then calculated using this new slope at each itera-
tion. The Runge-Kutta’s formula is defined as [4], [5], [6]: 
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Each of the Runge-Kutta terms has a well-defined role in the calculation 
method used: k1 is the increment based on the slope at the beginning of the inter-
val, k2 is the increment based on the slope at the midpoint of the interval, k3 is the 
increment based on the midpoint slope and k4 is the increment based on the slope 
at the end of the interval [5], [6]. 
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The method used has the advantage that during the integration, the step size is 
adapted so that the estimated error remains below a threshold defined by the user, thus 
solving the two distinct cases that may appear during the program run, i.e. if the calcu-
lated error is too large, it is repeated with a step of a smaller size, and if the error is 
much too small, the step size is increased to save processing time, thus helping the user 
who no longer has to identify the size suitable for processing [3], [5], [6]. 

3. Electric field line modeling application 

The developed application calculates the steps required for the successive 
plotting of the solution for the electrostatic equations for the 3 distinct cases using 
the Runge-Kutta method of order 4, the standard variant of the method, and 13 
necessary constants. 

For the case of the two electrostatically charged particles, their modeling is 
done with the help of two differential equations [8] which have as boundary condi-
tions x(s0) = x0 and y(s0) = y0 : 
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The first case is presented in Figure 1 where we considered two electrostati-
cally charged point particles with charges of opposite signs, in which case the 
equipotential field lines and the field lines that close between the two electrostati-
cally charged particles are drawn.  

 
Figure 1. The two particles have opposite signs 



 
212 

The second case is somewhat similar, but the potentials of the two particles 
differ in the sense that they are now of the same sign, which can also be seen in 
Figure 2 where their field lines repel each other. 

 

 
Figure 2. The two particles have same signs 

 
The third case requires placing a single electrostatically charged particle be-

tween the armatures of a planar capacitor, as seen in Figure 3, and the field lines 
are drawn for this case, with the user being able to change the distance of the parti-
cle from the capacitor arms, represented as two parallel lines in the graphic. 

 

 
Figure 3. The particle placed between capacitor’s armatures 
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The application allows changing the number of equipotential lines displayed, 
the size of the drawn plane, and the distance between successive field lines. For 
better visibility, the application window can be resized and the lines on the display 
grid can be hidden. 

We often come across simulation applications made for didactic purposes us-
ing common programming languages in different technical fields [9], [10]. 

The program is made in the Visual Studio development environment, with the 
help of the Visual Basic programming language, in the form of a standard executa-
ble that allows it to run under Windows operating systems [11], [12]. The applica-
tion consists of a module containing the graphics routines and a main window 
named Form1, on which several graphics controls are placed, including a Picture-
Box control that represents the display surface for graphic functions, and several 
HscrollBar controls for setting various display parameters like zoom or number of 
lines drawn. 

To calculate the grid lines and the values displayed on the graph axes, we use 
a graphic routine called "Draw" which receives as values the limits, minimum and 
maximum values of the axes and the Form window that contains the graphic con-
trol on which the respective lines are drawn [13], [14]. 

The three cases are selected using a set of three RadioButton controls that al-
low individual selection of the drawn cases. 

The starting point for the application is the main form. From the main form, 
based on our selected option, one of the two routines, "Afișez" or "Afisez1", is 
called, allowing the calculation of the derivatives and the point-by-point plotting of 
the graphs resulting from different scaling for each type of curve drawn on the 
screen [15]. 

 
Figure 4. The routine that implements the Runge-Kutta method 
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The "Rezolv" subroutine shown in Figure 4 is the one that helps to implement 
the 4th order Runge-Kutta algorithm, which successively calculates k1, k2, k3 and 
k4, returning the new values to the calling routine with the help of the parameters 
passed by reference to it. To avoid getting stuck, the algorithm calculates, at each 
step, a reference value that represents the sum of the squared dx and dy. If this val-
ue is lower than a very small imposed limit, it stops the program because the de-
sired precision has been reached or it has reached a point of singularity from where 
the created algorithm can no longer exit. The program can calculate only in one 
direction, based on the values already memorized, so a dead lock point can’t be 
exited otherwise [11], [12]. 

 The types of the variables used in the program are Double precision to keep 
the accuracy of the processed data within reasonable limits due to the small quanti-
ties used to model the two charged particles [10], [11], [12]. 

4. Conclusions  

The advantage of implicit Runge-Kutta methods over explicit methods is their 
greater stability, especially when stiff equations are applied. 

The application allows drawing of all existing field lines between electrostati-
cally charged particles, both of the equipotential type that always have a closed 
contour, and of the others that originate in the vicinity of positive electric charges 
and close to negative electric charges. 

The proposed application has a simple and intuitive interface and the results 
obtained can represent the basis of an understanding of the way of drawing the 
field lines and the way of interaction between electrically charged particles. 
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